- 1. Ashley rolled a die 10 times and kept track of her results shown here. {1, 3, 6, 1, 2, 6, 5, 2, 1, 4}
 - a. Based on Ashley's results, what is the experimental probability of getting a 2?

$$\frac{2}{10} = \frac{1}{5}$$

b. What is the theoretical probability of getting a 2?

2. Suppose 20% of students have early dismissal, 15% have late arrival and 5% have both. What is the probability that a student has late arrival or early dismissal?

3. Given P(A) = .4, P(B) = .2, and P(A and B) = .1 are events A and B independent? Explain.

no because
$$P(A \text{ and } B) \neq P(A) \cdot P(B)$$

 $\cdot 1 \neq (.4)(.2)$

4. Given P(A) = .4, P(B) = .2, and P(A or B) = .6 are events A and B mutually exclusive? Explain.

5. A bag contains 3 blue marbles, 4 green marbles and 2 red marbles. Find the probability of picking a blue marble, keeping it, and then picking another blue marble.

$$\frac{3}{9} \cdot \frac{2}{8} = \frac{1}{12}$$

6. In a math class of 30 students, 17 are boys and 13 are girls. On a unit test, 4 boys and 5 girls received an "A" grade. If a student is chosen at random from the class, what is the probability of choosing a girl or a student who received an "A"?

$$P(girl or A) = P(G) + P(A) - P(G ard A)$$

$$\frac{13}{30} + \frac{9}{30} - \frac{5}{30} = -\frac{17}{30}$$
7. In a bag containing 15 billiard balls of three colors – red, yellow and white. Frank picks a ball at random, records the color

and replaces it. He repeats this experiment 25 times and tallies his results as shown:

What is the best prediction of the number of balls of each color in the bag?

$$\frac{\text{reid}}{\left(\frac{13}{25}\right)(15)} = 8$$
 $\frac{\text{yellow}}{\left(\frac{8}{25}\right)(15)} = 5$ $\frac{\text{white}}{\left(\frac{4}{25}\right)(15)} = 2$

8. Find the probability that a randomly chosen point is in the shaded region.

The rectangle is 5 by 12 and the base of the triangle is 6.

$$\frac{15}{60} = \frac{1}{4}$$

